“RD-AL93 061 HLBEIRHIC HULTIGRID AND THE FHST MTIVE COHPOSITE 11
GRID METHO ARGE. . (U) RESEARCH INST OF C ADO
OLLINS S WCCORMICK 87 FEB 6 hFDS!-YR 97-0934
UNCLASSIFIED RFOSR-OS-M. F/G 12/1 N




Vo

b

L

i l‘. )‘:~
.‘v ey

lt.

-

“ W u'ﬂn"

W ‘t‘
i‘.‘\

sh‘

‘\.

as"i,.

g S FE
e £
Ml

=
2 fes

=
l=

==
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AW . LW . . 4 -

NN \"'-."-. s."\“‘-'ﬁ“ S
\. Y (:.V\ “, e




DS IS I I R IR I P IO B SR ]
PAR RGO PO A P AR, N

UhcTassif

SECUAITY CLASSIFICATION

1s. REPOAT SECURITY cLs

e AD-A183 06

28. SECURITY CLASSIFICAI1IUN - ’

0. DECLASSIFICATION/OOWNG !

0 _EiLE _copy @

ION PAGE

1 iTRICTIVE MARKINGS

RIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited

AT NUMBER(S)

¥D

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6s. NAME OF PERFOAMING ORGANIZATION b. OFFICE SYMBOL
(1f applicabdle)

Research Institute of Colorado

AFQSR .
7a. NAME OF momn*rg:‘l'}‘-‘-.O"“%z‘ﬂ"cU 9 S 4

AFOSR/NM

6c. ADDRESS (City. State and ZIP Code)

2629 Redwing
fFort Collins, CO 80526

7b. ADDRESS (City, State and ZIP Code)

B1dg 410

8. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

MM

A USK
8c. ADDRESS (City. State and ZIP Code)
B1dg 410

Bolling AFB DC 20332-6448

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERN

AFQSR-85-0118
10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
61102F 2304 K4

11. TITLE (Inciude Securnty Classification)

Algebraic Multigrid and FAC (y)

12. PEASONAL AUTHORI(S)

brote 0 anhen M '_miclz

13e. TYPE OF REPOAT 130. TIME COVERED

nal From 0@ D1 To oD 3

14. OATE OF REPORT (Yr. Mo., Dey) 15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17 COSATI CODES
FIELD GROUP

SuB. GR

18. SUBJECT TERMS /Continue on reverse if necessary and 1dentify by block number)

19. ABSTRACT '‘Continue on reverse :f necessary and dentify by bdloca number

This report describes research underta

ken at the Research

Institute of Colorado on two computational mathematics topics:

algebraic multigrid (AMG), and the fas

method (FAC).

t adaptive composite grid

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED . SAME AS RPT _ DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassifled

220. NAME OF AERSPONSIBLE INDIVIDUAL
Captain Thomas

22> TELEPHONE NUMBER

(2027 T6T-%3026

22¢ OFFICE SYmMB0L

DO FORM 1473, 83 APR

2 AT N ARy

AN TN Y \;-“-.-\:-";-“;-"--"\-‘ DR

EDITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION < Tm oo -

AT

..'.}." A S a

& Yy e
P""?.E FAPAE AN

e



P AT

- - -
PR SR SN

-

1 FINAL REPORT :
AFOSR-TR. 87-0954 y

! 4
| ALGEBRAIC MULTIGRID AND THE FAST ADAPTIVE ,:
COMPOSITE GRID METHOD IN LARGE SCALE COMPUTATION N
v d

+

.’

U

Dr. Stephen F. McCormick b

Accesivi for *“1‘

Research Institute of Colorado NTI & i ;

Drake Creekside Two, Suite 200 ore wa 4|

262? Redwing Road Unannounced (J ‘ 3

Ft. Collins, Colorado 80526 Justdication ' !
BY e .

Distribution | ] A
. m— -»-......4; .
Availahtity Coges | :
] Avai ?,?.’%,i.?“""“*[ =

for me D|:t SDQQ'J] : yf

) ) f

Al |
SR N SO B

Air Force Office of Scientific Research .
AFOSR-85~0118 °
February 7, 1986

A

P

’

¢

:

f

“

)
R G R R R A T N T A T, MV S o N o A W L A o W L G S A A

W/t
Mot



PRe gy~

..

T =~ ——-> Conventional or geometric multigrid algorithms depend on knowledge

Final Report

Algebraic Multigrid and the Fast Adaptive Camposite Grid
: Method in large Scale Camputatiaon

Progress of this project is categorized into the two areas described
below.

I. AMG. Jhe first area is devoted to study of algebraic multigrid
(AMG) (cf. (1)-(8)).

of the underlying geametry for a given problem (e.g., a partial differential
equation). This knowledge is used to predetermine coarser grids and the atten-
dant operators and intergrid transfers. Although very efficient solvers can
be developed in this way, the dissemination and use of geometric multigrid have
been impeded by the need to tailor the algorithm to each application. A fairly
generaf*black box™ solver based on multigrid principles would be useful in
overcoming these difficulties. |In fact, AMG is such a scheme that has many
advantages over other solvers (cft (7)) for treating many complex and irreqular

————— -

problems (cf. the introductions to (1) and (2)). - D R
For certain classes of matrices (e.g., symmetric positive-type), the
project has established AMG as an effect "black box" solver: the research has
shown (2) that point Gauss-Seidel for such matrices achieves (algebraic)
smoothness in the sense that the errors after just a few sweeps are "locally
constant”; that is, variables that are strongly ocou led via large off-diagonal
matrix entries must have similar errors. The coarsening process may therefore
use a Ritz-type variational formulation in an attempt to approximate such
errors; that is, it is enough to determine an interpolation process that ensures
that such errors are approximately in the range of interpolation. Such an
approximation property must be achieved while maintaining low coarplexity of the
resulting coarse-level problems; this can generally be accomplished by an
"operator" interpolation scheme that uses the matrix to determine the interpola-
tion coefficients. More critically, the coarse grid variables themselves are
chosen automatically in this scheme so that they properly represent the
"strength” of the fine grid equations. Loosely speaking, each fine grid

-1-
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variable that is not rexerved for the coarse grid must have only strong
couplings to variables that either are themselves reserved for the coarse

grid or are strongly coupled to variables that are. The means for implementing
this "coarsening" process are quite intricate, but the objectives that gquide
it are fairly straightforward. Moreover, shayp convergence rates were proved
in this and in more general cases, including block positive-type matrices such
as those that arise from discretizing Stokes equations (cf. (2)).

The main difficuity inapplying AMG to new classes of matrices is one
of determining the sense of smoothness (of relaxed errors) for these classes.
This sense is used as a basis for the coarsening process to determine strong
cou;lings and for interpolation ﬁo determine how to "collapse" the operator
(i.e., how to ignore couplings between strictly fine grid points so that a fine
grid variable is determined purely by coarse grid ones). Autamatic ways for compu-
tationally detecting the sense of smoothness that use preliminary relaxation
sweeps were one cf the central focuses of the project.

The project studied AMG applied to a wide variety of essentially posi-
tive-type problems, including anisotropic and ill-behaved diffusion equations
as well certain nonsymmetric problems, especially convection dominated diffu-
sion equations (5), (6), and same purely algebraic problems that arise in geodesy
(1). And it has just recently been established for many problems in structural
mechanics and fluid flows. (14). Yet there is a need to continue much of the
present efforts to extend AMG to a broader class of problems, applications and
machines, and to develop software. There are currently many ideas in each of
these directions — they are in fact quite abundant -- and the study devoted
effort to most of them. The project was irpelled by important application
areas where AMG seems most needed. This included, for example, finite-element
and boundary-element discretizations in structural analysis and aerodynamics
(the main topics of study), moving grid applications in reaction-diffusion

modeling, and many adaptive discretizations applications.
B II. FAC. “The second project area was the study of FAC in the context
of multiprocessor computer systems. FAC is developed for elliptic equations . \
in (9) < (11), which include various descriptions of basic and more sophisti-
cated FAC schames. Its application to advanced computers is documented in

(12) - (13).
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There is a clear need for local resolution in many physical
phenomena. For exanmple, when special local features of the forcing function,
boundary, or coefficients of an elliptic boundary value problem dictate dis-
cretization error characteristics that are substantially different than the
global features of the problem, it is important that the discretization acocount
for this locally. The presence of, say, a point source should not demand a fine
mesh throughout the region. Yet this objective of adapting to local phenomena
is often in conflict with the process designed to solve the discrete systenm.
Many linear solvers degrade significantly in the presence of different Qiscreti-
zation scales anG discrete "interfaces". 1In fact, even the discretization

process itself can be adversely affected by this objective: for finite differences,

it is problematic to cevelop sound difference formilae and data structures to
handle nonuniform grids; for finite elements, this objective is reflected in
the substantial overhead costs in automating the discretization.

It is, therefore, important to develop mesh refinement techniques that
are both efficient as well as systematic. Many existing mesh refinement
methods (especially those that are adaptive) are systematic but troubled by slow
or expensive solvers; many others (especially MLAT-type schemes (16, (17)) are
efficient but can be somewhat ad hoc. FAC atterpts to draw from the best of
both approaches.

The need for high local resolution is demanding not only better
nurerical methods, but more advanced computing systems as well. Present and
future conputational requirements are beyond the reach of expected computer
technological advancements and must therefore be addressed by advanced archi-
tectures. This is especially true for problems that require high local resolu-
tion because one of the basic tenets here is that this is often well beyond
present machine capabilities. Parallel architectures appear to be very natural
responses to such camputational dermands, especially in conjunction with FAC
since it partitions the local computations into separate independent processes.
The cambination of FAC and advanced parallel systems can provide a very
effective tool for solving a wide variety of large scale corputational models.

The recent progress of the project on linear FAC is documented in
detail in (12) attached. To sumwnarize, the results include a fairly carplete
theoretical treatment of convergence and its rates for elliptic problems; a
theoretical treatment for the case vhere the coarse grid operator and/or the
fine grid operator are replaced by approximate solvers; a discussion of how to

-3-
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construct acceptable camposite grid operators; numerical results for two types
of elliptic problems, a discussion of other topics such as removal of singular-
ities and multilevel FAC; results on the application of FAC to the HEP; com-
plexity analysis of FAC for multiprocessor systems (the first of its kind);

and a theoretical and practical development of ROMG, a new and efficient FAC
method for eigenvalue problems.

ROMG (13) is a fully variational multigrid-like method for solving
differential eigenvalue problems. It has been successfully applied to nodel
problems and to the difficult single grour neutron diffusion problem at LANL
in cooperation with Joel Dendy. Initial efforts were made to implement an
efficient FAC version of RQMG (which has been done on model problems only, but
with great success) and to extend these codes to multigroup problems.

Stephen F. McCormick, Ph.D.
Principal Investigator
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